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Abstract

We analyze a dynamic moral hazard principal-agent model with an agent who
is loss averse and whose reference updates according to the previous period’s
consumption. Under full commitment and when the agent has no access to credit
markets, the optimal payment scheme can have flat segments at the reference level.
This property implies that there is a positive probability of observing constant
wages over time, even though the scheme has memory. Moreover, the model
predicts a “status quo bias” -a preference for consuming his full allocation ex post-
whenever the agent is allowed to borrow or save after the outcome is realized .
This result in turn implies that unlike the canonical model, the optimal contract
may be implemented even when the agent has access to a saving technology.
We also show that although the optimal contract scheme is renegotiation-proof,
it cannot be implemented by a sequence of spot contracts. However, when the
agent has access to the credit market and the principal can monitor his savings,
the long-term optimal contract is spot contractible. Finally, to deal with non-
differentiabilities, we use subdifferential calculus to compute the optimal program.

1 Introduction
In this paper we modify the classical principal-agent model with moral hazard by
assuming that the agent is loss averse to payments below the previous period’s
consumption. We analyze the optimal contracting problem both when the agent
has no access to credit markets and when he does have access to credit but the
principal can monitor his savings.

The dynamic moral hazard model under the classical risk aversion assumptions
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has been extensively analyzed in the literature. The characteristics of this sec-
ond best optimal scheme are developed in Rogerson (1985) and Chiappori et al.
(1994). Under mild conditions, the restricted savings model predicts that the
agent’s compensation is strictly increasing in the current period outcome. It also
predicts that the contract exhibits memory; i.e., the agent’s compensation in one
period also depends on the outcomes of all prior periods. Furthermore, as the
optimal contract smoothes the expected (inverse) of marginal utility over time,
the scheme offers compensations that are front-loaded. Intuitively, since the agent
needs to rely on the principal to transfer resources over time, the principal can
reduce the cost of providing effective incentives by keeping the marginal utility of
consumption low in earlier periods. In turn, this implies that if the agent were
ex-post allowed to save or borrow, he would never choose to consume more than
the current period’s compensation. If anything, he would choose to save. Finally,
when the agent has no access to a savings technology, the long-term contract
cannot be implemented by a sequence of spot contracts because of the memory-
in-wages property.

Under monitored savings, the classical model predicts that the principal will con-
trol savings to provide intertemporal consumption smoothing, and will balance
insurance and incentives through the payment scheme. Since the long-term con-
tract has now memory in consumption and not in wages, it is spot-implementable.
Furthermore, the long-term contract is renegotiation proof.

In this paper we review the robustness of these predictions to the introduction of
reference dependence and loss aversion in the agent’s utility function. Loss aver-
sion was first proposed by Kahneman and Tversky (1979) as an essential element
of their Prospect Theory. Under these preferences, the dislike that consumption
below the reference generates is greater than the elation produced by an equally
sized gain. A large and growing body of literature in economics and in cognitive
psychology supports the hypothesis that references do affect individual decisions.1

In this paper, we study a dynamic set up in which the reference is updated en-
dogenously. Similar to Bowman et al. (1999), Munro and Sugden (2003) and
Dittmann et al. (2010) we assume the agent’s reference is equal to the previous
period’s consumption; that is, in addition to the standard consumption utility,
he derives gain-loss utility from comparing current consumption with lagged con-
sumption.2

This new framework confirms many of the predictions of the classical dynamic

1Rabin (1998) and Della Vigna (2009) survey this literature.
2There is little evidence on how reference levels are determined. Our assumption is also similar

to models of the endowment effect that posit that willingness to pay for a good depends on recent
ownership status. In a dynamic setup like ours, the alternative of assuming that the reference is based
upon expectations may lead to solutions in which the agent makes plans that will not be carried out
(Koszegi and Rabin, 2009). It is worth emphasizing that our model is one of fully forward-looking
behavior: both the agent and the principal take into account the effects of their behavior on future
references.
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moral hazard model. In particular, we find that the optimal long-term contract
is non-decreasing in outcomes, displays memory in wages and provides consump-
tion smoothing. Moreover, the full commitment optimum is ex-post efficient and
therefore it is renegotiation proof. We also show that in the monitorable access to
credit case the contract is renegotiation-proof, implementable via spot contracts
and it coincides with the no-access optimum.

Our main finding, however, is that the optimal contract we derive displays a
number of relevant new properties. Most important, these new features of the
second best optimal scheme are better in line with observed contracts.

First, optimal wage schedules may be insensitive to outcomes in an interval, offer-
ing to pay the reference income for a set of performance measures. Intuitively, the
cost of inducing effort by increasing payments right above the reference may be
high due to the sudden decrease in marginal utility. Similarly, although effective
in providing incentives, a reduction in payment just below the reference increases
the cost of inducing participation, again due to the discontinuity in marginal util-
ity. In other words, it is optimal to provide full insurance locally because loss
aversion involves first-order risk aversion around the reference (Segal and Spivak,
1990).

Second, for all periods after the first, the optimal wage schedule pays the ref-
erence for an interval of outcomes. Except for the last period, the flat segment
may even extend for the whole support of the outcomes’ distribution. Thus in-
centives may be optimally provided not by rewards and punishments that are
contingent on the current period’s result but by the promise of future income.

Third, the fact that the payment schemes exhibit flat segments in most peri-
ods implies, under weak assumptions, that there is a positive probability that
two consecutive payments are equal; e.g., that wages exhibit time persistence
as reported by Dickens et al. (2007). In contrast, the classical model predicts
variability in observed wages whenever the outcomes’ distribution is continuous.
Moreover, there is a positive probability that the agent perceives a fixed wage
over T−1 periods; therefore all incentives must be deferred to the last period with
schemes that are at least partly sensitive to outcomes in T , a prediction consistent
with the evidence in Baker, Jensen and Murphy (1988) and in Baker, Gibbs and
Holmstrom (1994).

Fourth, when the agent is allowed to save or borrow after the realization of the
performance measure, we find that the agent may either choose to save, borrow or
consume his wage. In the classical model the optimal payment scheme requires the
agent to consume more than he would choose in order to facilitate the provision
of incentives in future periods. In our model, this effect is also present. However,
there are other effects in play that may make the agent want to borrow or con-
sume his full allocation in some periods. On the one hand, saving and borrowing
not only modify the intertemporal allocation of consumption but also change the
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future references. On the other hand, changes in consumption may lead to cur-
rent or future losses, motivating the agent to choose to consume his full allocation.

In other words, loss aversion implies that the marginal utility of savings may
not be equal to (minus) the marginal utility of borrowing. In fact, they may be
both simultaneously negative. Therefore, whenever the agent experiences a loss
by either saving or borrowing, he will prefer to consume his full wage in a manner
consistent with the “status quo bias” of Samuelson and Zeckhauser (1988). More-
over, whenever the agent is consuming his reference in one period or there is a
positive probability of being paid the reference in the next, the smallest interest
rate at which the agent would be willing to lend part of his income is strictly
higher than the rate he would be willing to pay to borrow. That is, the model
predicts a related phenomenon (Bateman et al., 1997): a discrepancy between the
willingness to accept and the willingness to pay.

An important consequence of our analysis is that the optimal payment scheme
does not always require constrained savings. Many of the canonical model’s pre-
dictions hinge on the extreme assumption that the agent’s borrowing and saving
are constrained, either because credit is not available to him or because the prin-
cipal can monitor his actions in the credit market. In particular, under these as-
sumptions, the optimal long-term contract is renegotiation-proof. However, when
the agent does have access to the credit market and his savings and borrowing are
private information, the full commitment long-term optimum is not renegotiation
proof. In fact, the renegotiation-proof long-term contract cannot provide incen-
tives to exert any effort above the minimum. Since it is unlikely that a court of
law would prevent renegotiation towards a Pareto-improving agreement and since
constraining savings may be implausible in most contexts, the classical theory
cannot explain the existence of long-term commitment contracts (Chiappori et
al., 1994). Thus loss aversion and our assumed dynamic update of the reference
might give a rationale for the ubiquity of commitment contracts.

Finally, we show that the sequence of optimal spot contracts is not memoryless
as in the classical case and will in general not coincide with the full-commitment
optimum.

There exists a small but growing literature on moral hazard, optimal contracts
and loss aversion. This literature intends to explain the gaps between the rich
contracts predicted by theoretical developments and the fairly simple contracts
that are actually observed (Prendergast, 1999; Salanie, 2003). De Meza and Webb
(2007) first introduced loss aversion to the static principal agent model. When
the reference is either exogenous or equal to the certainty equivalent of rewards,
their model predicts that over some interval pay may be insensitive to perfor-
mance. Bonuses may arise when the reference is the median reward. In the latter
case, the principal can provide insurance and incentives avoiding the loss area by
lowering the median and by rewarding good performance at the same time.
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Optimal binary payment schemes also arise in Herweg et al. (2010). Their one-
period principal agent model assumes a piece-wise linear gain-loss function and
reference formation as in Koszegi and Rabin (2006, 2007); i.e., the agent derives
gain-loss utility by comparing the actual payment with his (lagged) rational ex-
pectations about rewards. In particular, Koszegi and Rabin’s formulation assumes
that a stochastic outcome is evaluated according to its expected utility, with each
payment being compared to all outcomes in the support of the reference lottery.
Under this setting, the optimal scheme is a lump sum bonus contract with the
bonus paid whenever a certain level of performance is achieved. The intuition
is that under this reference formation process, a contract specifying many possi-
ble wages induces the agent to make comparisons that may yield losses or gains.
Given loss aversion, on net news hurt the agent, reducing his expected utility and
increasing the average payment needed to make him participate. A simple binary
contract induces effort and minimizes the cost of inducing the agent to accept the
contract.3

Iantchev (2011) provides a structural estimation of the one-period principal-agent
model under moral hazard and a loss averse agent. The model allows for multiple
principals and multiple agents. The reference point is determined by the expected
value of the payment under the equilibrium contract in the market, as defined by
Rayo and Becker (2007). Under these assumptions, optimal pay may also be in-
sensitive to performance in an interval. Because the agent is assumed risk-loving
in the loss space, the payment scheme displays a discontinuity whenever output
falls below a threshold.4

To our knowledge, Macera (2012) is the only other paper that considers loss
aversion in a dynamic setting of the principal-agent model. Macera (2012) ex-
tends the static model to a two period model in which the agent is loss averse to
changes in beliefs about present and future consumption as in Koszegi and Rabin
(2009), an extension of the static environment assumptions of Koszegi and Rabin
(2006, 2007). Under certain conditions on the relative strength of current and
future gain-loss utility, the optimal contract offers a fixed wage in the first period
and an output contingent increasing wage scheme in the second period. That is,
the principal defers incentives to the future.

Our model shares many features of this growing body of literature that modi-
fies the principal-agent model by assuming that the agent is loss averse. Our
model enriches the setting, however, by allowing for a T period relationship and
by analyzing the properties of the optimal contract in addition to its complexity-

3Daido and Itoh (2006) also allow for loss aversion and the Koszegi and Rabin (2006, 2007) reference
formation. The model assumes a binary measure of performance. Unfortunately, little can be said
about the form of the optimal contract under this binary output measure assumption.

4The discontinuous drop in payments when the observed outcome measure is low is also found in
Dittmann et al. (2010) who also assume risk-loving in the loss space. The paper calibrates a one period
principal agent model in order to explain CEO compensation. The calibration assumes, though, that
the optimal scheme is piecewise linear.
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renegotiation proofness, spot contractibility, wage persistence and the role of the
constrained savings assumption. It also shows that predicted contracts may not
be as simple once dynamics is considered.

In addition, since loss aversion induces a discontinuity in marginal utility, we
rigorously derive the optimality conditions using convex analysis tools. We show
that the program the principal faces has a concave objective function and that
the feasible set is convex. Therefore, the optimum can be characterized by a “zero
belongs to the subgradient set” condition (Rockafellar, 1970 and 1974; Rockafellar
and Wets, 1997). This methodology is useful in dealing with non-differentiabilities
and the lack of validity of the usual first order conditions.

The remainder of the paper is organized as follow. In Section 2 we present the
model. In Section 3 we derive the optimality conditions in the full-commitment
case with no access to credit markets to characterize the shape of the optimal
second best payment scheme. We also derive the main intra and intertemporal
properties of this optimal contract. In Section 4 we analyze the optimal scheme
under monitorable access to credit. In Section 5, and in order to illustrate our
findings, we develop a numerical example of the solution of a two period model.
Finally, we conclude in Section 6.

2 The Model
The model describes a repeated principal-agent problem analogous to the dynamic
moral hazard model of Rogerson (1985) and ?; e.g., we assume finite horizon, dis-
counting and a risk neutral principal who can borrow and save at a fixed interest
rate. Our model differs, however, in that we assume a loss averse agent.

The relationship between the principal and the agent lasts T + 1 periods. In each
period i ∈ {0, . . . , T} the agent exerts an unobservable action ai ∈ {aL, aH} with
aL < aH . The outcome in period i is denoted xi ∈ [xi, x̄i] with a differentiable
distribution function f i(xi|ai), where ai denotes the action chosen. The distri-
butions of outcomes are independent across periods conditional on actions. We
assume that these distributions exhibit the Monotone Likelihood Ratio Property
(MLRP); that is, if we denote f iai(xi|ai) = f i(xi|aH)− f i(xi|aL), then

f iai (xi|ai)
f i(xi|ai) is

non-decreasing in xi. We let the wage schedule in period i depend on the outcomes
realized in the current and in all previous periods and denote it ωi(x0, x1, . . . , xi).

Let ci be the agent’s consumption in period i and Ri > 0 the corresponding
reference point. Also let ψi(·) represent an increasing and convex cost function.
Then the agent’s utility is

Ũ(ci, Ri)− ψi(ai) (1)

We denote the cost difference between the low and high action as ∆ψi = ψi(aH)−
ψi(aL).

To allow for loss aversion we assume that the agent’s preferences are characterized
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by the following property:

lim
t→0+

Ũi(R+ t, R)− Ũi(R,R)

t
< lim

t→0+

Ũi(R− t, R)− Ũi(R,R)

−t

that is, the left-sided derivative of Ũi is greater than its right-sided derivative. In
other words, we assume that the utility gain of consumption over R is lower than
the utility loss of consumption below R in an equally sized amount. We assume
that Ũi is continuous, concave and differentiable at all points other than R, that
limc→0 Ũi(c,R) = −∞ and limc→∞ Ũi(c,R) =∞.5

For `0 > 0, an exogenous reference level R0 and a smooth, concave and strictly
increasing function U(·), given R0, without loss of generality, the period 0 utility,
Ũ0 can be expressed as: 6

Ũ0(c0, R0) = U(c0)− `0θ(c0, R0) (U(R0)− U(c0))

where

θ(c,R) =

{
1 if c < R

0 otherwise.
(2)

A graphical representation of the first period utility function is given in Figure
2. As the reference increases from R to R′, utility above R′ remains unaffected,
while it drops below R′.

For periods i > 0, we assume that the reference level depends dynamically on
the consumption that took place in the previous period; more specifically, we as-
sume that Ri+1 equals ci. This assumption is based on psychological evidence
indicating that individual choices depend not only on current consumption but
also on previous levels of consumption (see ?). ?, ?, Iantchev (2011) and Dittman
et al. (2010) have also assumed similar forms of update.7

We assume the utility in period i+ 1 takes the following form:

Ũi+1(ci+1, Ri) = Ũi+1(ci+1, ci) = U(ci+1)− `i+1θ(ci+1, ci) (U(ci)− U(ci+1))

with θ(ci+1, ci) defined as in (2) and `i+1 > 0. We assume the agent discounts the
future exponentially at rate δ. We also assume that `iδ < 1 in order to ensure
that the total utility of two consecutive periods is increasing in the consumption

5Note that we do not assume diminishing sensitivity, that is, that the agent is risk averse in gains
but risk loving in losses.

6A proof can be found in the appendix.
7Other papers assume different processes for reference formation. For instance, Koszegi and Rabin

(2006 and 2007) use the rational expectation of consumption. Gul (1991) takes the certainty equivalent.
Chetty and Szeidl (2010) derive a reference that partly depends on past consumption in a model of
adjustment costs in consumption. The issue of reference formation is still an understudied problem.
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of the first.8

The principal is risk neutral and therefore, for any given outcome xi, her util-
ity is xi − ωi(x0, x1, . . . , xi). Finally, we assume that the principal also discounts
the future exponentially at rate δ.

Figure 1: Utility function for different levels of reference.

8Recall that utility is decreasing in the reference for consumption levels below the reference. In
addition, we let `i to vary across periods to allow for generality. For instance, Harrison and List (2004)
shows that loss aversion can be mitigated by market experience, suggesting that `i might decrease over
time.
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3 Full commitment and no access to credit mar-
kets
We start by analyzing the optimal contracting problem under the assumptions of
full commitment and no access to credit markets. That is, we assume that both
the principal and the agent are able to commit to the contract during the whole
duration of the relationship, and that the principal can borrow and save at the
fixed interest rate 1

δ − 1, but that the agent can neither borrow nor save.

Whenever the agent has no access to credit markets, he must consume his current
income. Thus, in this case, the principal faces the following program,

max
(ωi(·))i,(ai(·))i

T∑
i=0

δiE (xi − ωi|a0, a1, . . . , ai)

subject to

T∑
i=0

δiE
(
Ũi(ωi, Ri)− ψi(ai)|a0, a1, . . . , ai

)
≥ U∗ (PC)

a(·) = (a0, a1(·), . . . aT (·)) ∈ argmaxa(·)
T∑

i=0

δiE
(
Ũi(ωi, Ri)− ψ(ai)|a0, a1, . . . , ai

)
(IC)

where E(·|a0, a1, . . . , ai) denotes an expectation given actions (a0, a1, . . . , ai). 9

The objective function represents the expected payment to the principal. The
first constraint (PC) is the standard participation constraint. It prescribes that
the agent must obtain an expected utility of a at least U∗ from the relationship.
Constraint (IC) states that the effort chosen maximizes the expected utility of the
agent, and is henceforth referred to as the incentive compatibility constraint.

3.1 Optimality conditions
In order to find optimality conditions, it is convenient to define a function hi(v0, v1, . . . , vi)
that represents the cost to the principal of providing a level of utility vi in period
i whenever the utility provisions in the previous periods were {v0, v1, . . . , vi−1}.
The utility provision cost vi depends on the realized outcomes up to time i,
(x0, x1, . . . , xi). Note that because of the reference dependent preferences and
the dynamic update assumption, the provision of any given level of utility affects
the shape of the agent’s utility in future periods.

9This expectation evaluated on an arbitrary function g(x0, . . . , xi) is defined as,

E (g|a0, a1, . . . , ai) =

ˆ
g(x0, x1, . . . , xi)f

0(x0|a0)f1(x1|a1(x0)) · · · f i(xi|ai(x0, . . . , xi−1))dx0dx1 . . . dxi.
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We can now rewrite the program the principal faces as choosing utility provi-
sions vi(x1, x2, . . . , xi) contingent on the outcomes up to period i as follows,

max
(vi(·))i,(ai)i

T∑
i=0

δiE (xi − hi(v0, v1, . . . , vi)|a0, a1, . . . , ai) (3)

subject to

T∑
i=0

δi (E (vi|a0, a1, . . . , ai)− ψi(ai)) ≥ U∗ (PC’)

a = (a0, a1(x0), . . . aT (x0, x1, . . . , xT−1)) ∈ argmaxa
T∑

i=0

δi (E (vi|a0, a1, . . . , ai)− ψ(ai))

(IC’)

hi(v0, v1, . . . , vi) is an increasing and continuous function given by,

hi(v0, v1, . . . , vi) =

{
U−1

(
vi+`iU(hi−1(v0,v1,...,vi−1))

1+`i

)
if vi < U(hi−1(v0, v1, . . . , vi−1))

U−1(vi) if vi ≥ U(hi−1(v0, v1, . . . , vi−1))

(4)
where U(h−1) = R0.

The following three properties determine the optimality conditions for the pay-
ment scheme. Property 1 proves that the problem is indeed convex which allows
for the use of subdifferential calculus in finding the conditions for the optimal con-
tract. That is to say, we can write a Lagrangian as in the everywhere differentiable
case, and find the optimal contract such that zero belongs to the sub-gradient set
of the Lagrangian.10 Property 2 characterizes the sub-gradient set of the cost func-
tion which is a crucial step in computing the subgradient set of the Lagrangian.
Property 3 describes the optimality conditions.

Property 1. [Convexity]
Under the assumptions of the model, the utility provision cost functions hi :

Ri → R for i ∈ 1, . . . , T are strictly convex and therefore the optimization problem
given by (3)-(PC’)-(IC’) has a strictly concave objective function and a convex
feasible set.

Proof. See appendix.

Property 2. [Subgradient set]

10Note that in the differentiable case we would need to find a zero of the differential with respect
to the optimization variables given the multipliers. Since in this case the objective function is not
differentiable, optimization can be attained by finding the sub-gradient set. A reference for these ideas
is ?.
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The subgradient set11 of hi(v0, v1, . . . , vi) is given by

∂hi(v0, v1, . . . , vi) =

 1

U ′(ωi)

 i∏
t=j+1

kt(x0, x1, . . . , xt)`t
1 + kt(x0, x1, . . . , xt)`t

 1

1 + kj(x0, x1, . . . , xj)`j

i

j=0

(5)
where

kt(x0, x1, . . . , xt) ∈

 {1} if ωt(x0, x1, . . . , xt) < Rt

[0, 1] if ωt(x0, x1, . . . , xt) = Rt

{0} otherwise
(6)

Proof. See appendix.

Property 3. [Optimality conditions]
There is a unique optimal wage schedule that solves the program faced by the

principal and it is characterized by the following optimality conditions,

1

U ′(ωi(x0, x1, . . . , xi))
= (1 + ki(x0, x1, . . . , xi)`i)

(
λi + µi

f iai
(xi|ai)

f i(xi|ai)

)
+

−δ`i+1

ˆ
ωi+1≤ωi

ki+1(x0, x1, . . . , xi+1)(λi+1+µi+1

f i+1
ai+1

(xi+1|ai+1)

f i+1(xi+1|ai+1)
)f i+1(xi+1|ai+1)dxi+1. ∀i < T

(7)

and
1

U ′(ωT (x0, x1, . . . , xT ))
= (1 + kT (x0, x1, . . . , xT )`T )

(
λT + µT

fTaT
(xT |ai)

f i(xi|ai)

)
(8)

where

• λi = λ +
∑i−1

k=0 µk
fkak

(xk|ak)

fk(xk|ak)
, with λ the multiplier associated to (PC’) and

µi = µi(x0, . . . , xi−1) the multipliers associated to the incentive compatibility
constraints.

• The function ki(x0, x1, . . . , xi) is associated to the kink in the utility function
and is given by

ki(x0, x1, . . . , xi) ∈

 {1} if ωi(x0, x1, . . . , xi) < Ri

[0, 1] if ωi(x0, x1, . . . , xi) = Ri

{0} otherwise

Proof. See appendix.

Note that whenever `i = 0 ∀i the optimality condition describes the solution
to the canonical case. In addition, the optimality condition for a spot contract is
given by equation (8) when T = 0, as in ?. In the following subsection we describe
the main intra and intertemporal properties of this optimal scheme.

11By definition we know that for a generic convex function f : Rn+1 → R the subgradient set at
x ∈ Rn+1 is given by the set of vectors d = (d0,d1, . . . , dn+1) ∈ Rn+1 such that for any vector α ∈ Rn+1

f(x+ α) ≥ f(x) + d · α
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3.2 Properties of the optimal payment scheme
Inspection of equations (7) and (8) imply that there are two main properties
that distinguish the shape of optimal payment scheme from the classical case.
First, it can have flat segments. This is explained by the multiplicative term
(1 + ki(x0, x1, . . . , xi)`) in (7) and (8). At the reference level, ki(x0, x1, . . . , xi)
is allowed to take any value in [0, 1]. Therefore, the right hand side of equations
(7) and (8) can remain constant in an interval: as xi increases, ki(x0, x1, . . . , xi)
decreases and ωi(x0, x1, . . . , xi) remains at the reference. Intuitively, the cost of
inducing effort by increasing payments right above the reference may be high due
to the discontinuous fall in marginal utility. Similarly, although effective in pro-
viding incentives, a reduction in payment just below the reference increases the
cost of inducing participation, again due to the discontinuity in marginal utility.

The second difference relates to the fact that the principal takes into account
that each period’s payment affects the reference level of the following period. The
last term of the right hand side of equation (7), which is strictly positive, repre-
sents this effect. In each period i, this term tends to lower the payment scheme
and to reduce its growth rate as xi increases. Intuitively, the term represents the
benefit of lowering the payment in the current period, in order to reduce the fol-
lowing period’s reference and to increase the utility of the agent in the loss area.
Naturally, this effect does not occur in T (equation (8)).

On the basis of these optimality results, in the following property we show that
the optimal wage schedule can be insensitive to outcomes in an interval. We then
examine memory and the relationship between payments across any pair of con-
secutive periods.

Property 4. [Shape of the optimal payment scheme] If `i−1 ≥ `i ≥ `i+1 and
δ`i ≤ 1, then ωi(x0, x1, . . . , xi) is continuous and non-decreasing in xi and,

1. For i ∈ {0, . . . , T}, ωi(x0, x1, . . . , xi) is non-decreasing in xj for j ∈ {0, . . . , i}.
2. For i ∈ {1, . . . , T}, if ωi−1(x0, x1, . . . , xi−1) > Ri−1 then for any value of

(x0, x1, . . . , xi−1) it must be the case that ωi(x0, x1, . . . , xi) = Ri for some
outcome xi ∈ [xi, x̄

i] . Furthermore the payment scheme has a flat segment
at the reference and therefore, ωi is not strictly increasing.

3. For i ∈ {1, . . . , T −1}, if (`i−`i+1)δ ≥ `i−1−`i and ωi−1(x0, x1, . . . , xi−1) ≤
Ri−1 then, for any value of (x0, x1, . . . , xi−1), ωi(x0, x1, . . . , xi) = Ri for
some outcome xi ∈ [xi, x̄

i] . Furthermore the payment scheme has a flat
segment at the reference and, therefore, ωi is not strictly increasing.

4. If ωT−1(x0, x1, . . . , xT−1) ≤ RT−1 then, for any value of (x0, x1, . . . , xT−1),
ωT (x0, x1, . . . , xT ) = RT for some outcome xT ∈ [xT , x̄

T ]. The payment
scheme has a flat segment at the reference but it cannot be fully flat in xT .

Proof. See appendix.
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Figure 2: Schematic representation of monotonicity of contracts

The previous property states that the payment scheme is, as in the canonical
case, non-decreasing. However, starting in period 1 the reference wage must be
paid for an interval of outcomes. Figure 3.2 is an schematic representation of the
monotonicity of possible payment schemes. According to Property 4, panels (a),
(b) and (c) are possible in all periods. Panel (d) is possible in periods {0, . . . , T −
1}. Flat schedules are not optimal in period T . Two elements distinguish period
T . One refers to the fact that consumption in T does not affect the reference of
future periods, so the effect of a high wage in T on the cost of providing utility is
limited. The other is that there is a positive probability that the agent perceives
a fixed wage over T − 1 periods. In that case, all incentives must be deferred
to the last period with schemes that are at least partly sensitive to outcomes.
Macera (2009) finds a similar result in a two-period model. Finally, panel (e) is
possible in period 0 only. In period 0, the payment scheme may or may not offer
the reference level of consumption for some outcome.

Next we analyze how the payment scheme depends on the history of outcomes.
Just as in the canonical model, consumption smoothing requires that a higher
payment in one period results in a higher payment in all subsequent periods. In
the classical model the implication is that wage schedules are strictly increasing in
every realized outcome. However, in our model, wage schedules may overlap for
outcomes that pay the reference level. This result is summarized in the following
property.

Property 5. [Dependence across periods]
Let x′i < x′′i two possible outcomes in period i.

13



Figure 3: Optimal contracts, outcomes between two consecutive periods

1. If ωi(x0, x1, . . . x
′
i) = ωi(x0, x1, . . . x

′′
i ) = Ri then

ωj(x0, x1, . . . x
′
i, xi+1, . . . , xj) ≤ ωj(x0, x1, . . . x

′′
i , xi+1, . . . , xj) ∀j > i ∀xj ∈ [xj , xj ]

2. If ωi(x0, x1, . . . x
′
i) < ωi(x0, x1, . . . x

′′
i ) then

ωj(x0, x1, . . . x
′
i, xi+1, . . . , xj) < ωj(x0, x1, . . . x

′′
i , xi+1, . . . , xj) ∀j > i ∀xj ∈ [xj , xj ]

Proof. It follows directly from (7) and (8) since µi > 0 ∀i.

Property 5 implies that panels (a) and (b) in Figure 3.2 are possible in our
model. Note also that only (c) is possible in the canonical model. This property
implies in turn that there is a positive probability that wages exhibit time persis-
tence, even if realized outcomes differ over time.

Next, we find an analogue to the relationship between the wage schedules
offered in any two consecutive periods as was first derived by Rogerson (1985)
under classical assumptions. In the classical case, the inverse of the marginal
utility of income must equal the conditional expected value of the inverse of the
next period’s marginal utility of income. This condition is no longer valid in
our model. However, an extended condition can be derived as is stated in the
following property. Let ωi(x0, x1, . . . , xi) be denoted ωi(xi) to simplify notation,
and similarly let ki(xi) denote ki(x0, x1, . . . , xi).

Property 6. [Relationship between two consecutive periods] The following rela-
tionship between two consecutive periods is fulfilled,

1

U ′(ωi−1(xi−1))(1 + ki−1(xi−1)`i−1)
=

ˆ
1

U ′(ωi(xi))(1 + ki(xi)`i)
f i(xi|ai)dxi + c(xi−1)
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where

c(xi−1) = −
`iδ

1 + ki−1(xi−1)`i−1

ˆ
ki(xi)

(
λi + µi

f iai
(xi|ai)

f i(xi|ai)

)
f i(xi|ai)dxi + (9)

`i+1δ

ˆ ˆ
ki+1(xi+1)

1 + ki(xi)`i

(
λi+1 + µi+1

f i+1
ai+1

(xi+1|ai+1)

f i+1(xi+1|ai+1)

)
f i+1(xi+1|ai+1)f i(xi|ai)dxi+1dxi

Proof. Follows directly from equations (7) and (8).

Property 6 implies that the inverse of the marginal utility of income might be
greater or smaller than the conditional expectation of the marginal utility.12

This relationship between any two adjacent periods implies in the classical case
that the optimal contract front-loads consumption; i.e., if allowed to save or bor-
row after the realization of the current period outcome, the agent will choose to
save. In our model, however, this will not necessarily be the case: the agent may
have incentives to save, borrow or consume her full allocation ex-post. Further-
more, he may face utility losses by either saving or by borrowing and thus might
be inclined to consume his full allocation.

Intuitively, assume the loss averse agent faces the possibility of reallocating re-
sources between any two consecutive periods, i and i+ 1. If he borrows, the effect
on current marginal utility depends on whether today’s income is over or under
the reference. Due to loss aversion, whenever the current payment is at or over
the reference, the gain in utility is small relative to whenever current income is
below the reference. Similarly, the effect on tomorrow’s marginal utility might be
relatively high if because of previous period’s borrowing, consumption falls under
the reference. These effects may make borrowing unattractive to the agent. Re-
inforcing this effect, this intertemporal reallocation of resources increases period
i + 1 reference, reducing utility and increasing the marginal utility of consump-
tion in the loss area. A similar argument applies to the decision of saving. Thus
the possibility of facing marginal losses that may be larger than marginal gains,
jointly with the intertemporal effects on the reference, imply that the agent will
face situations in which he would face a loss in utility by either saving or borrow-
ing. He will thus decide to consume the full allocation.

This discussion is an application of the “status quo bias” as described by ?. A
related phenomenon is that this situation may lead to a gap between willingness
to pay (WTP) and willingness to accept (WTA). Assume the agent is in a situa-
tion in which he would lose by either saving or borrowing at the market interest
rate 1/δ − 1. However, if given the possibility of lending a part of his income at
interest rate rl or borrowing at interest rate rb, indifference between lending and

12There is some abuse of language here since we refer as marginal utility of Ũi to the term
U ′(ωi(xi))(1 + ki(xi)`i) since both quantities are equal for all incomes except the reference. At
the reference level the marginal utility is not computable and could take any value between
[U ′(ωi(xi)), U

′(ωi(xi))(1 + `i)].
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borrowing would require rl > 1
δ − 1 > rb. That is, the smallest price at which he

is willing to lend is strictly greater than the largest price he is willing to pay for
borrowing. This is not the case in the canonical model since indifference between
lending and borrowing for any set of payment schemes in any two consecutive pe-
riods can be attained at a single interest rate. This gap between WTA and WTP
has been described in other economical contexts (?). Moreover, if the market
offers interest rates such that rb ≥ rl, then the agent will find himself inclined to
consume his allocation.

An important consequence is that under our assumptions the optimal payment
scheme does not always require constrained savings, a problematic property of the
canonical model (Chiappori et al., 1994). In particular, renegotiation proofness in
the canonical case relies on the assumption of constrained savings, either because
credit is not available or because the principal can monitor the agent’s actions in
the credit market. If the agent has access to the credit market but his savings can-
not be contracted upon, then the full commitment long-term optimum is ex-post
inefficient. Moreover, the renegotiation-proof long-term contract cannot provide
incentives to implement any effort above the minimum. Since it is unlikely that a
court of law would prevent renegotiation towards a Pareto-improving agreement
and since constraining savings may be implausible in most contexts, the classical
theory cannot explain the existence of long-term commitment contracts (Chiap-
pori et al., 1994). Thus loss aversion and our assumed dynamic update of the
reference might give a rationale for the existence of commitment contracts.

A formalization of this discussion is presented in the following properties.

Property 7. [Status quo bias]

• If the payment in period i is y and is at the reference and the payment in
period i + 1 is constant such that yi+1(xi+1) = y ∀xi+1 ∈ [xi+1, x̄i+1],
then the agent will neither want to save nor borrow at the rate 1

δ − 1. More-
over, if rl is the rate that makes the net marginal utility of saving equal to
zero and rb the rate that makes the net marginal utility of borrowing equal
to zero, then rl > 1

δ − 1 > rb.

• Let yi be the payment in period i and yi+1(xi+1) the payment scheme in
period i + 1. If yi+1 pays the reference with positive probability or yi is at
the reference, then the rate rl that makes marginal utility of saving equal
to zero is strictly greater than the rate rb that makes the marginal utility of
borrowing equal to zero.

Proof. See appendix.

Property 8. [Intertemporal allocation of resources] If the interest rate is 1
δ − 1

in period i then the agent may have incentives to save for period i+ 1, to borrow
and pay back in period i + 1 or to consume exactly her income depending on the
parameters of the problem. Moreover,

16



• If period’s i+1 payment scheme is over the reference for all results, then the
agent does not have incentives to save in period i.

• If period’s i + 1 payment scheme is below the reference for all outcomes in
period i+ 1 then

– if period’s i payment is strictly above the reference then the agent has
incentives to save in period i.

– If period’s i payment is at the reference, the agent will not have incen-
tives to borrow in period i.

– If period’s i payment is strictly below the reference the agent may have
incentives to save, to borrow or to consume her allocation.

Proof. See appendix.

The previous property states, among other things, that if the payment scheme
is flat for low outcomes and then increasing for larger outcomes, then the agent
will not have incentives to save. In the following subsection we show that the
payment scheme will not take values under the reference as long as the cost to
the principal of the participation constraint λ is sufficiently high.

3.3 The shape of the optimal contract and the shadow
cost of participation
In a three period context we analyze how the optimal payment scheme changes
if the cost for the principal of the participation constraint were to change. We
analyze this case by studying the effects of a change in the multiplier λ.

Property 9. [Cost of (PC) and shape of optimal contract]
There is a value λ̄ such that if λ ≥ λ̄ the optimal payment scheme is strictly

above the reference, for all realizations, in each period (letting the other multipliers
be fixed).

Proof. See appendix.

Recall that λ is the shadow cost of relaxing the participation constraint. This
property says that if the participation constraint is sufficiently costly then the
contract must be backloaded. It suggests that the cost of the participation con-
straint to the principal is closely related to whether incentives are to be created
through rewards or punishments. This result is highly intuitive: providing incen-
tives through the threat of payments below the reference creates a great loss in
utility for an agent whose participation is already very costly. The principal is
better off thereby providing incentives through rewards only.
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3.4 Renegotiation-proofness and spot-implementability
The optimal contract scheme is renegotiation-proof just as in the classical case.
As a matter of fact, ? has shown that the renegotiation-proofness property does
not rely on the differentiability of the utility function. Underlying this result is
the assumption that the agent is able to predict how her utility updates in each
period. If this were not the case, the property might not hold.

However, the optimal sequence of spot contracts exhibit memory, unlike the clas-
sical case, because of our assumption on the dynamic update of the reference
level. The utility function of the agent changes from period to period with the
reference, and so may the reservation utility. In order for the full-commitment
contract with no access to credit markets to be implemented by a sequence of spot
contracts, the update of the reservation utility after each outcome must exactly
correspond to the continuation payoff that the agent expects under this contract.
Thus, the optimal commitment contract may not be implemented by a sequence
of spot contracts.

Property 10. [Optimal spot contracting]
The optimal sequence of spot contracts exhibits memory and it will not imple-

ment the full-commitment optimum in general.

This result follows by backwards induction as in ?.

4 Monitorable access to credit
We now move to the case when the agent can reallocate resources intertemporally
by borrowing or saving through the credit market. We further assume that the
agent’s trades in the credit market can be monitored, so savings can be contracted
upon. The program that the principal faces is then the following,

max
(ωi(·))i(ai)i,(si)i(Si)i

T∑
i=0

δiE (xi − ωi(x0, x1, . . . , xi)− Si(x0, x1, . . . , xi)|a0, a1, . . . , ai)

subject to

T∑
i=0

δi
(
E
(
Ũi(ωi(x0, x1, . . . , xi)− si(x0, x1, . . . , xi), ci−1)|a0, a1, . . . , ai

)
− ψi(ai)

)
≥ U∗ (PC)

(a0, a1(x1), . . . aT (x0, x1, . . . , xT )) ∈ argmax−→a
T∑

i=0

δi
(
E
(
Ũi(ωi(x0, x1, . . . , xi)− si(x0, x1, . . . , xi), ci−1)|a0, a1, . . . , ai

)
− ψ(ai)

)

(IC)

where si are the agent’s accumulated savings in period i; that is, the net
savings of the agent in period i once the endowment derived from previous savings
is taken into account. Similarly, Si are the accumulated savings of the principal.
It is easy to see that the previous program is equivalent to one in which the
optimization variables are the consumptions of the agent in each period, given
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by ci(x0, x1, . . . , xi) = ωi(x0, x1, . . . , xi) − si(x0, x1, . . . , xi), and the aggregate
accumulated savings, given by si + Si, and constraint sT = − sT−1

δ . Since the
principal is assumed risk neutral, the optimality conditions are similar to (10)
and (8) with ci replacing reward ωi. Therefore, the optimality conditions for
consumptions with monitorable access to credit are as follows,

1

U ′(ci(x0, x1, . . . , xi))
= (1 + ki(x0, x1, . . . , xi)`i)

(
λi + µi

f iai
(xi|ai)

f i(xi|ai)

)
+

−δ`i+1

ˆ
ki+1(x0, x1, . . . , xi+1)(λi+1+µi+1

f iai+1
(xi+1|ai+1)

f i(xi+1|ai+1)
)f i(xi+1|ai+1)dxi+1. ∀i < T

(10)

and

1

U ′(cT (x0, x1, . . . , xT ))
= (1 + kT (x0, x1, . . . , xT )`T )

(
λT + µT

fTaT
(xT |ei)

f i(xi|ei)

)
(11)

where ki(x0, x1, . . . , xi) is given by,

ki(x0, x1, . . . , xi) ∈

 {1} if ωi(x0, x1, . . . , xi) < Ri

[0, 1] if ωi(x0, x1, . . . , xi) = Ri

{0} otherwise

This result is similar to what is obtained in the classical case: there is a
strong relationship between the monitorable access to credit case and the full-
commitment with no credit access case. Furthermore, just like in the classical
case, monitoring borrowing and savings introduces memory to the principal-agent
relationship and therefore the optimal long-term contract will be spot-contractible.
These results are summarized in the following property.

Property 11. [Spot contractibility under monitorable credit]
Suppose the reservation utility U∗i (si−1, Ri) in period i depends on the savings

that the agent has in period i − 1 and on the reference level Ri, and that it is
continuous, increasing in si−1. Then, under monitorable savings, the long-term
optimal contract is spot contractible.

Proof. See appendix.

5 A two period example
In this section we numerically compute the optimal payment scheme in a two
period setting in order to illustrate the forms these optimal contracts can take.
We assume the distribution function of outcomes xi ∈ [0, 1] in period i ∈ {1, 2},
for effort level aj ∈ {aL, aH} is a triangular function given by

f i(xi|aj) =

{
2xi
aj

xi ≤ aj
2(1−xi)

1−aj xi > aj
(12)
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Note that in this case
f iai (xi|ai)
f i(xi|ai) may not be strictly increasing with respect to

outcomes xi. We also assume aH = 1 and aL = 0.1 in which case
f iai (xi|ai)
f i(xi|ai) is

constant in [0, 0.1].

We assume that utility is described by the function U(Y ) =
√
Y and therefore

Ũi(Yi, Ri) =
√
Yi − θ(Yi, Ri)`i(

√
Ri −

√
Yi)

The optimality conditions are,

1

U ′(ω0(x0))
= 2
√
ω0(x0) = (1 + k0(x0)`0)

(
λ0 + µ0

f0a0
(x0|a0)

f0(x0|a0)

)
+

− δ`1
ˆ
ω1≤ω0

k1(x0, x1)(λ1 + µ1

f1a1
(x1|a1)

f1(x1|a1)
)f1(x1|a1)dx1. (13)

1

U ′(ω1(x0, x1))
= 2

√
ω1(x0, x1) = (1 + k1(x0, x1)`1)

(
λ1 + µ1

f1a1
(x1|a1)

f1(x1|a1)

)
(14)

5.1 Case 1: First period payment independent of out-
comes
The first example illustrates a case in which the first period payment does not
depend on the outcomes that take place in that same period (see Figure 5.1).
That is, the first period payment is constant at the reference level. The second
period payment scheme is contingent on outcomes obtained on the first and sec-
ond periods as depicted in Figure 5.1.13 The values of parameters used in this
simulation are given in the following table, along with the multipliers

`0 `1 aH aL 1/U ′(R0) λ µ0 µ1

1 1 1 0.1 37 46.1 0.5 2

Note that the second period scheme falls below the reference if low outcomes
are realized in the first period. For outcomes in the first period that are greater
than a threshold, the agent faces a payment scheme in the following period that
is greater or equal than the payment received in the first period. Consequently,
according to Property 8, he will not have incentives to save for outcomes above a
threshold.

13Note that the flat segments for small values of first and second period outcomes are due to the

fact that
fi
ai

(xi|ai)

fi(xi|ai)
is constant in [0, 0.1].
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Figure 4: Case 1. First Period Payment Scheme

Figure 5: Case 1. Second Period Payment Scheme
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Figure 6: Case 2. First Period Payment Scheme

5.2 Case 2: First period payment greater or equal than
R0

The next example illustrates a case in which the first period payment reaches the
reference for low values of the first period outcome (see Figure 5.2). The second
period payment scheme is shown in Figure 5.2. The values of parameters used in
this simulation are given in the following table, along with the multipliers

`0 `1 aH aL 1/U ′(R0) λ µ0 µ1

1 1 1 0.1 15 30.1 1 1

5.3 Case 3: Second period payment over reference for
all outcomes
This example illustrates a case in which payments are over the reference for all
outcomes in the first and second periods (see Figure 5.3). The parameters used
are the same as in Case 2, except that the cost for the principal of inducing
participation is higher, which is reflected in a higher λ (Property 9). The second
period payment scheme is contingent on outcomes obtained on both the first and
second periods as shown in Figure 5.3. According to Property 8, in this case the
agent does not have incentives to save for any possible outcome realization in the
first period. The payment schemes shown in Figures 5.3 and 5.3 are efficient,
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Figure 7: Case 2. Second Period Payment Scheme

renegotiation-proof and they implement the high level of effort in both periods
if the agent is restricted to borrow. The values of the parameters used in this
simulation are given in the following table, along with the multipliers.

`0 `1 aH aL 1/U ′(R0) λ µ0 µ1

1 1 1 0.1 15 40.1 1 1

6 Conclusions and Final Remarks
In this paper we extend the dynamic moral hazard principal-agent model first
derived by Rogerson (1985) to allow for an agent who is loss averse and whose
reference updates according to previous consumption. We analyze the optimal
contracting problem under two scenarios. In the first one the agent has no access
to credit markets and thus needs to rely on the principal to transfer resources
over time. In the second one the agent has access to credit but the principal can
monitor her savings.

When the agent has no access to credit markets and is forced to consume her
earnings, we find that the optimal payment scheme can have flat segments at
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Figure 8: Case 3. First Period Payment Scheme

Figure 9: Case 3. Second Period Payment Scheme
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the reference; i.e., the wage may be insensitive to outcomes in an interval. This
property implies, in turn, that there is a positive probability of observing constant
wages over time, even though the contract scheme displays memory –it depends
on the full history of outcomes–. Moreover, the model predicts a “status quo bias”
whenever the agent is allowed to borrow or save after the outcome is realized,
whereas in the canonical model, if anything, he would like to save for future peri-
ods. In other words, there is a gap between the interest rates at which the agent
is willing to lend and borrow ex-post.

We also show that although the optimal contract scheme is renegotiation-proof,
it cannot be implemented by a sequence of spot contracts because of the dynamic
update process we assume for the reference. However, when the agent has access
to the credit market and the principal can monitor savings, then the long-term
optimal contract is spot contractible.

In sum, this paper shows that many of the properties of the classical model
hold under our assumptions –consumption smoothing, memory and renegotia-
tion proofness. Moreover, our model predicts new features of the optimal scheme
that may help explain many of the facts described by the empirical literature on
labor contracts. First it might explain why observed contracts are fairly simpler
than those predicted by the classical theory. In fact, many authors have called
attention to the simplicity of actual contracts compared to those derived by the
theoretical literature (Chiappori and Salanie, 2000; Salanie, 2003; Bolton and De-
watripont, 2005). Our model might also explain why real wages are persistent
over time (Dickens et al., 2007) and why incentives tend to be deferred to the
future (Baker, Jensen and Murphy, 1988; Baker, Gibbs and Holmstrom, 1994).
That is, our model predicts features of the optimal contract that are better in
line with the empirical findings, while at the same time conserving many of the
properties predicted by the classical model.

Future research should analyze the robustness of our results to a number of
assumptions. In particular, a related literature on loss averse preferences has
assumed different reference formation processes. In addition, an interesting gen-
eralization of our model is to allow for a loss averse principal. In this case, we
expect the agent and the principal to protect each other against losses whenever
the other party’s reference point is reached.

7 Appendix

7.1 Ũ0 expressed in terms of U and `0

Let’s prove that Ũ0 can be expressed as

Ũ0(c0, R0) = U(c0)− `0θ(c0, R0) (U(R0)− U(c0))
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Define

U(c0) =

{
Ũ0(c0, R0) if c0 ≥ R0

Ũ0(c0, R0)L+ (1− L)Ũ(R0, R0) if c0 ≤ R0

where L = Ũ0

′+
(R0)

Ũ0

′−
(R0)

with Ũ0

′+
(R0) and Ũ0

′−
(R0) denoting the right and left

derivative of Ũ0 at R0.

U as defined is continuous and differentiable with U ′(R0) = Ũ0

′+
(R0). It is

concave since we assume Ũ0(c0, R0) concave in c0.

Define `0 = 1−L
L , then if c0 ≤ R0 we have

U(c0)− `0θ(c0, R0) (U(R0)− U(c0)) =

Ũ0(c0, R0)L+(1−L)Ũ(R0, R0)−1− L
L

(
Ũ0(R0, R0)− Ũ0(c0, R0)L− (1− L)Ũ(R0, R0)

)
=

Ũ0(c0, R0)L+ (1− L)Ũ(R0, R0)− 1− L
L

L
(
Ũ0(R0, R0)− Ũ0(c0, R0)

)
= Ũ0(c0, R0)

7.2 Proof of property 1
Let’s see that hi(v0, v1, . . . , vi) is strictly convex. Since U is strictly increas-
ing we can write, hi(v0, v1, . . . , vi) = U−1(U(hi(v0, v1, . . . , vi))), we prove that
U(hi(v0, v1, . . . , vi)) is strictly convex and increasing and we conclude by the strict
convexity of U−1 (implied by the strict concavity of U).14 Let vi = (v0, . . . , vi) and
v′i = (v′0, . . . , v

′
i) be two utility provision vectors. Denote vi−1 = (v0, v1, . . . , vi−1).

By the definition of convexity, we need to prove,

U(hi(λ(v0, . . . , vi)+(1−λ)(v′0, . . . , v
′
i))) < λU(hi(v0, v1, . . . , vi))+(1−λ)U(hi(v

′
0, v
′
1, . . . , v

′
i)) ∀λ ∈ (0, 1)

(15)
Note that for i = 0, by (4) U(h(v0)) is linear by parts, increasing and convex
(derivative for v0 < R0 is 1

1+`0
< 1 and for v0 > R0 it is 1.). Let’s prove (15)

assuming true for i− 1.

If λvi + (1 − λ)v′i < U(hi−1(λ(v0, . . . , vi−1) + (1 − λ)(v′0, . . . , v
′
i−1))) the utility

provision of period i of the convex combination is in the loss area and we have

U(hi(λv
i + (1− λ)v′

i
)) =

(
λvi + (1− λ)v′i + `iU(hi−1(λvi−1 + (1− λ)v′i−1))

1 + `i

)

≤ λ

(
vi + `iU(hi−1(vi−1))

1 + `i

)
+

(1− λ)

(
v′i + `iU(hi−1(v′i−1))

1 + `i

)
≤ λU(hi(v

i)) + (1− λ)U(hi(v
′i−1

))

14Note that the composition of a convex increasing function with a convex function is convex.
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The first inequality is implied by the induction hypothesis and the second is jus-
tified noting that if vi > U(hi−1) then U(hi(v

i)) = vi >
(
vi+`iU(hi−1(vi−1))

1+`i

)
and

if vi ≤ U(hi−1) then U(hi(v
i)) =

(
vi+`iU(hi−1(vi−1))

1+`i

)
.

A similar argument proves (15) for the case in which λvi+(1−λ)v′i ≥ U(hi−1(λ(v0, . . . , vi−1)+
(1− λ)(v′0, . . . , v

′
i−1))).

U(hi(λ(v0, . . . , vi) + (1− λ)(v′0, . . . , v
′
i))) = λvi + (1− λ)v′i ≤ λU(hi(v

i)) + (1− λ)U(hi(v
′i−1

))

Where the last inequality is justified by noting vi < U(hi−1(vi−1)) implies
vi ≤

(
vi+`iU(hi−1(vi−1))

1+`i

)
= U(hi(v

i)).

Finally, the constraints are linear in vi(x0, x1, . . . , xi) for each i and, therefore,
convexity of the feasible set is straightforward

7.3 Proof of property 2
We have

hi(v0, v1, . . . , vi) = U−1(U(hi(v0, v1, . . . , vi)))

where

U(hi(v0, v1, . . . , vi)) =

{
vi if vi ≥ U(hi−1(v0, v1, . . . , vi−1)
vi+`iU(hi−1(v0,v1,...,vi−1))

1+`i
if vi < U(hi−1(v0, v1, . . . , vi−1)

(16)
By Proposition 4.2.5 in ? we know that15

∂hi(v0, v1, . . . , vi) =
(
U−1

)′
((U ◦ hi) (v0, v1, . . . , vi))) · ∂ ((U ◦ hi) (v0, v1, . . . , vi))

.

Now, note that from (16) we have U(hi(v0, v1, . . . , vi)) = Fi((U ◦ hi−1) (v0, v1, . . . , vi−1), vi)

where Fi(x, y) =

{
y if y ≥ x
y+`ix
1+`i

if y < x

Let (d0, . . . , di−1) ∈ ∂ (U ◦ hi−1) (v0, v1, . . . , vi−1) and (d̃0, d̃1) ∈ ∂Fi((U ◦ hi−1) (v0, v1, . . . , vi−1), vi)

let’s see that that (d0 · d̃0, d1 · d̃0, . . . , di−1 · d̃0, d̃1) ∈ ∂ (U ◦ hi) (v0, v1, . . . , vi). In
fact, we have

(U ◦ hi) (v0 + α0, v1 + α1, . . . , vi + αi) =

Fi((U ◦ hi−1) (v0 + α0, . . . , vi−1 + αi−1), vi + αi) ≥ Fi((U ◦ hi−1) (v0, v1, . . . , vi−1) + d0α0 + · · ·+ di−1αi−1, vi + αi)

≥ Fi((U ◦ hi−1) (v0, v1, . . . , vi−1), vi) + d0d̃0α0 + · · ·+ di−1d̃0αi−1 + d̃1αi

15A vector d ∈ IRn is a subgradient of f at a point x ∈ IRn, denoted d ∈ ∂f(x), if

f(z) ≥ f(x) + (z − x)′d ∀z ∈ IRn
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Where the first inequality is due to (d0, . . . , di−1) ∈ ∂ (U ◦ hi−1) (v0, v1, . . . , vi−1)
and Fi increasing in its first variable. The second inequality is implied by

(d̃0, d̃1) ∈ ∂Fi((U ◦ hi−1) (v0, v1, . . . , vi−1), vi)

Let’s now see that the reverse is also true. That is, we show that an element of
∂ (U ◦ hi) (v0, v1, . . . , vi) can be written as (d0 · d̃0, d1 · d̃0, . . . , di−1 · d̃0, d̃1) with
(d0, . . . , di−1) ∈ ∂ (U ◦ hi−1) (v0, v1, . . . , vi−1) and (d̃0, d̃1) ∈ ∂Fi((U ◦ hi−1) (v0, v1, . . . , vi−1), vi)

Let’s compute ∂Fi(x, y). If x 6= y Fi is differentiable and therefore its subgra-
dient set coincides with the derivative.

Otherwise, y = x and the elements of the subgradient set of ∂Fi(x, y) will be
the pairs (d̃0, d̃1) such that,

Fi(x+ α0, y + α1) ≥ F (x, y) + α0d̃0 + α1d̃1 ∀α0, α1 ∈ R (17)

If α0 ≤ α1 then x+ α0 ≤ y + α1 and (17) becomes

y + α1 ≥ y + α0d̃0 + αid̃1

⇐⇒ (1− d̃1)α1 ≥ d̃0α0

which is true for all α1 ≥ α0 if and only if (1− d̃1) = d̃0 > 0. 16

If α0 > α1 then x+ α0 > y + α1 and (17) becomes

y + α1 + `i(x+ α0)

(1 + `i)
≥ y + α0d̃0 + α1d̃1

⇐⇒
(

`i
1 + `i

− d̃0

)
α0 ≥

(
d̃1 −

1

1 + `i

)
α1

which is true for all α0 < α1 if and only if
(

`i
1+`i
− d̃0

)
=
(
d̃1 − 1

1+`i

)
> 0.

Therefore, summarizing we have established that

(d̃0, d̃1) ∈ ∂F (x, x) =⇒ d̃0 ∈
[
0,

`i
1 + `i

]
, d̃1 ∈

[
1

1 + `i
, 1

]
and d̃0 = 1− d̃1

And therefore, we can write,

∂Fi(x, y) =


(

ki`i
1 + `iki

,
1

1 + `iki

)
; where ki(x0, x1, . . . , xi) ∈

 {1} if ωi(x0, x1, . . . , xi) < Ri

[0, 1] if ωi(x0, x1, . . . , xi) = Ri

{0} otherwise


Suppose that (d̄0, . . . , d̄i) ∈ ∂ (U ◦ hi) (v0, . . . , vi), let’s see that (d̄0, d̄1, . . . d̄i−1, d̄i) =
(d0·d̃0, d1·d̃0, . . . , di−1·d̃0, d̃1) for some vectors (d0, . . . , di−1) ∈ ∂ (U ◦ hi−1) (v0, . . . , vi−1)
and

16Note that α0 and α1 can take negative values.
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(d̃0, d̃1) ∈ ∂Fi((U ◦ hi−1) (v0, . . . , vi−1), vi).

Note that by the Fi((U ◦ hi−1) (v0, . . . , vi−1), vi+αi) ≥ Fi((U ◦ hi−1) (v0, . . . , vi−1), vi)+
αid̄i ∀αi implies we must have d̄i = 1

1+`iki
with ki defined by (6) (subgra-

dient set in one variable). We know that in points in which Fi is differen-
tiable its subgradient set coincides with the derivative which will be (0, 1) if
(U ◦ hi−1) (v0, . . . , vi−1) < vi and ( `i

1+`i
, 1

1+`i
) if (U ◦ hi−1) (v0, . . . , vi−1) > vi.

Therefore, from Proposition 4.2.5 ? we must have that ∂U(hi(v0, . . . , vi)) =(
(1− d̄i) · ∂ (U ◦ hi−1) (v0, . . . , vi−1), d̄i

)
.

If F is not differentiable we have (U ◦ hi−1) (v0, . . . , vi−1) = vi. Let (α0, α1, . . . , αi−1) ∈
Ri, we define α̂i = (U ◦ hi−1) (v0 + α0, . . . , vi−1 + αi−1)− vi.

Note that ∂U(hi(v0, . . . , vi)) = F ((U ◦ hi−1) (v0 +α0, . . . , vi−1 +αi−1), vi + α̂i) =
vi+ α̂i. In fact, this is straightforward if α̂i ≥ 0. If α̂i < 0 then F ((U ◦ hi−1) (v0 +

α0, . . . , vi−1 + αi−1), vi + α̂i) = vi+α̂i+`i(α̂i+vi)
(1+`i)

= vi + α̂i.

Since (d̄0, . . . , d̄i) in ∂U(hi(v0, . . . , vi)) we have

vi + α̂i ≥ vi + d̄0α0 + · · ·+ d̄i−1αi−1 + d̄iα̂i

=⇒ α̂i(1− d̄i) ≥ d̄0α0 + · · ·+ d̄αi−1

=⇒ (U ◦ hi−1) (v0 + α0, . . . , vi−1 + αi−1)− (U ◦ hi−1) (v0, . . . , vi−1) ≥
(
d̄0α0 + · · ·+ d̄i−1αi−1

) 1

(1− d̄i)

=⇒ (d̄0, . . . , d̄i−1)
1

(1− d̄i)
∈ ∂ (U ◦ hi−1) (v0, . . . , vi−1)

We conclude for (d0, . . . , di−1) = (d̄0, . . . , d̄i)
1

(1−d̄i)
∈ ∂ (U ◦ hi−1) (v0, . . . , vi−1)

and (d̃0, d̃1) =
(
(1− d̄i), d̄i

)
∈ ∂F ((U ◦ hi−1) (v0, . . . , vi−1), vi) that (d̄0, d̄1, . . . d̄i−1, d̄i) =

(d0 · d̃0, d1 · d̃0, . . . , di−1 · d̃0, d̃1).

We may now deduce inductively ∂U(hi(v0, . . . , vi)). For the functions ki defined
by (6) we have

∂U(h0(v0)) =

{
1

1 + k0`0

}
therefore

∂U(h1(v0, v1)) =

(
k1`1

1 + `1k1
· 1

1 + k0`0
,

1

1 + `1k1

)
and

∂U(h2(v0, v1, v2)) =

(
k2`2

1 + `2k2
· k1`1

1 + `1k1
· 1

1 + k0`0
,

k2`2
1 + `2k2

· 1

1 + k1`1
,

1

1 + `2k2

)
and inductively, (5) is obtained.

∂hi(v0, v1, . . . , vi) =

 1

U ′(ωi)

 i∏
t=j+1

kt(x0, x1, . . . , xt)`t
1 + kt(x0, x1, . . . , xt)`t

 1

1 + kj(x0, x1, . . . , xj)`j

i

j=0

(18)
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7.4 Proof of property 3
We assume that the principal is looking for optimal utility provisions v = (vi(·))Ti=0

in the function spaces
(
L1([x0, x̄0]× [x1, x̄1]× · · · × [xi, x̄i])

)T
i=0

. Consider the fol-
lowing functions

f0(v0, v1, . . . , vT ) =
T∑
i=0

δiE (xi − hi(v0(x0), v1(x0, x1), . . . , vi(x0, x1, . . . , xi))|a0, a1, . . . , ai)

g0(v0, v1, . . . , vT ) =
T∑
i=0

δi (E (vi(x0, x1, . . . , xi)|a0, a1, . . . , ai)− ψi(ai))− U∗

hi(v0, v1, . . . , vT ) =

T∑
j=i

δj (∆aiE (vj(x0, x1, . . . , xj)|ai, . . . , aj))−∆ϕa

For ũ0, u0 ∈ R, ui : Ri → R ∈ L1(Ri) for i ∈ {1, . . . , T} endowed with the
measure µi induced by the outcome probability. Let u = (ũ0, u0, u1, . . . uT ) ∈
U = R2 × L1(R)× L1(R2)× · · · × L1(RT ) we define

F (v, u) =

{
f0(v0, v1, . . . , vT ) if g0(v0, v1, . . . , vT ) ≥ ũ0, hi(v0, v1, . . . , vT ) ≥ ui(x0, x1, . . . , xi−1)

−∞ otherwise.

−F (v, u) is closed in u since the sets {u|F (v, u) ≥ α} are closed for all α ∈ R
by continuity of f0, g0 and hi for i ∈ {0, . . . , T}. −F (v, u) is also convex in u.17

Following ?, equation 4.2, the Lagrangian function K is defined as

K(v, y) = sup{F (v, u)+ < u, y > |u ∈ U}
with y = (ỹ0, y0, y1, . . . , yT ) ∈ Y = R2 × (L∞)T+1 and

< u, y >= ỹ0ũ0 + y0u0 + Eµ1(y1u1) + Eµ2(y2u2) + . . .+ EµT (yTuT )

In our case K is equal to

K(·, y) =

{
f0 + g0ỹ0 + h0y0 + Eµ1(y1h1) + Eµ2(y2h2) + . . .+ EµT (yThT ) if y ≥ 0

+∞ if y < 0

Where we say y ≥ 0 if all components are positive almost everywhere. Let
y = (λ, µ0, . . . , µT ), the Lagrangian becomes.

K(v, y) =

T∑
i=0

δiE (xi − hi(v0(x0), v1(x0, x1), . . . , vi(x0, x1, . . . , xi))|a0, a1, . . . , ai) +

λ

(
T∑

i=0

δi (E (vi(x0, x1, . . . , xi)|a0, a1, . . . , ai)− ψi(ai))− U∗
)

+

T∑
i=0

 T∑
j=i

δj (∆ai
E (µi(x0, x1, . . . , xi−1) · vj(x0, x1, . . . , xj)|a0, a1 . . . , aj))


17We need to check F (v, u) is concave in u. We need to check that for u1, u2 ∈ U , if F (x, u1) 6= −∞,

F (x, u2) 6= −∞ then F (x, αu1 + (1 − α)u2) 6= ∞. This follows since αu1j + (1 − α)u2j ≥ min{u1j , u2j}
for j ∈ {1, . . . , T + 2}.
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Where we denote

∆aiE (µi(x0, x1, . . . , xi−1) · vj(x0, x1, . . . , xj)|a0, a1, · · · ai, · · · , aj) =

E (µi(x0, x1, . . . , xi−1) · vj(x0, x1, . . . , xj)|a0, a1, · · · , ai = aH, · · · , aj) +

−E (µi(x0, x1, . . . , xi−1) · vj(x0, x1, . . . , xj)|a0, a1, · · · , ai = aL, · · · , aj) =ˆ
µi(x0, x1, . . . , xi−1) · vj(x0, x1, . . . , xj)f0(x0|a0) · · · f iai

(xi|ai) · · · f j(xj |aj)dx0 · · · dxi · · · dxj

We say that y belongs to the subgradient set of a function ϕ : V → R at v ∈ V ,
which we denote y ∈ ∂ϕ(v) if

ϕ(v′) ≥ ϕ(v)+ < v′ − v, y > ∀v′ ∈ U

We say that (v̄, ȳ) satisfies the Kuhn-Tucker condition if 0 ∈ ∂v(−K(v̄, ȳ)) and
0 ∈ ∂y(−K(v̄, ȳ)) .

Since −F (v, u) is closed and convex in u from Theorem 15 in ? we know
that if (v̄, ȳ) satisfies the Kuhn-Tucker condition then v̄ solves the principal prob-
lem given by equations (3) through (4). Note that 0 ∈ ∂yK(v̄, ȳ) if and only if
K(v̄, y′) ≥ K(v̄, ȳ) ∀y′ ∈ Y which is equivalent to ask that the constraints (PC’)
through (4) be satisfied. If one of the constraints is not satisfied at v̄ then K(v̄, ·)
is unbounded. Thus we only need to verify that 0 ∈ ∂yK(v̄, ȳ).

K(v, y), although non-differentiable, is concave in v = (vi(·))i and the set of
constraints is convex (Property 1), therefore a necessary and sufficient condition
for a wage schedule to be optimal is that the subgradient set of −K(v, y) (denoted
∂ (−K(v, y))) contains 0. Since from Property 1 we have that E (hi(v0(x0), v1(x0, x1), . . . , vi(x0, x1, . . . , xi))|a0, a1, . . . , ai)
are convex in (vi(·))i, from proposition 4.2.4 in ?. 18

∂ (−K(v, y)) =

T∑
i=0

δi∂E (hi(v0(x0), v1(x0, x1), . . . , vi(x0, x1, . . . , xi))|a0, a1, . . . , ai) +

− λ

(
T∑

i=0

δi∂E (vi(x0, x1, . . . , xi)|a0, a1, . . . , ai)

)
+

−
T∑

i=0

 T∑
j=i

δj∂ (∆aiE (µi(x0, x1, . . . , xi−1) · vj(x0, x1, . . . , xj)|ai, . . . , aj))


From Theorem 22 of ?, we know that a subgradient set of −K is the expectation
of the subgradient set of the integrand.

18Note that the subgradient set of a constant function is equals to zero
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∂ (−K(v, y)) =

T∑
i=0

δiE (∂hi(v0(x0), v1(x0, x1), . . . , vi(x0, x1, . . . , xi))|a0, a1, . . . , ai) +

− λ

(
T∑

i=0

δiE (∂vi(x0, x1, . . . , xi)|a0, a1, . . . , ai)

)
+

−
T∑

i=0

 T∑
j=i

δj (∆ai
E (µi(x0, x1, . . . , xi−1) · ∂vj(x0, x1, . . . , xj)|ai, . . . , aj))


Therefore from Property 2 making ∂ (−K(v, y)) equal 0 by components corre-
sponds to,

0 =

T∑
i=j

δi−jE

 1

U ′(ωi(x0, x1, . . . , xi))

 i∏
t=j+1

kt(x0, x1, . . . , xt)`t

1 + kt(x0, x1, . . . , xt)`t

 1

1 + kj(x0, x1, . . . , xj)`j
· g(x0, x1, . . . , xj)

∣∣∣a0, a1, . . . , ai
+

− λE
(
g(x0, x1, . . . , xj)

∣∣a0, a1, . . . , aj)+

−
j∑

i=0

(
∆aiE

(
µi(x0, x1, . . . , xi−1)g(x0, x1, . . . , xj)

∣∣a0, a1, . . . , aj))

for every g ∈ L1
(
[x0, x̄0]× [x1, x̄1]× · · · × [xj , x̄j ]

)
, which implies

1

U ′(ωj)
·

1

1 + kj`j
+

T∑
i=j+1

δi−jE

 1

U ′(ωi)

 i∏
t=j+1

kt`t

1 + kt`t

 1

1 + kj`j

∣∣∣aj+1, . . . , ai

 = λ+

j∑
i=0

µi
f iai

(xi|ai)
f i(xi|ai)

(19)

= λj + µj
fjaj

(xj |aj)

fj(xj |aj)

For every j ∈ {1, . . . , T}. Multiplying the equation for j + 1 by kj+1`j+1 taking
expectation with respect to f j+1(xi+1|aj+1) we obtain

E
(

1

U ′(ωj+1)

kj+1`j+1

1 + kj+1`j+1

∣∣∣aj+1

)
= −

T∑
i=j+2

δi−j−1E

 1

U ′(ωi)

 i∏
t=j+2

kt`t
1 + kt`t

 kj+1`j+1

1 + kj+1`j+1

∣∣∣aj+1, . . . , ai

+

E

((
λj+1 + µj+1

f j+1
aj+1

(xj+1|aj+1)

f j+1(xj+1|aj+1)

)
kj+1`j+1

∣∣∣aj+1

)

Replacing this last expression in the j+ 1 term of the sum in (19), 7 and 8 are
obtained.

7.5 Proof of property 4
The payment scheme must be continuous and non-decreasing. In fact, the multi-
pliers µi are strictly positive. If not, then the payment scheme would not depend.
It can be seen that the right side of (24) has slope with respect to xi of at least
d
dxi

(
(1− δ`i+1)µi

f iai (xi|ai)
f i(xi|ai)

)
and therefore, ωi must be non-decreasing. A flat seg-

ment will arise whenever the payment scheme reaches the first period reference
level. (10) and (8) imply that, as xi increases and reaches the reference if the
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scheme were to continue increasing it would enter the gain area and the right
side of (10) and (8) would jump downwards, therefore contradicting that it in-
creased after reaching the reference income. Something analogous happens when
the reference level is reached from above (as xi decreases), if the optimal scheme
were to go below the reference, the optimality characterization would require it
to jump upwards. This contradicts that it decreased after reaching the reference
from above.

Now, let’s see whether the reference will be reached. The following equality
must be fulfilled,

1

U ′(ωi(x0, x1, . . . , xi))
= (1 + ki(x0, x1, . . . , xi)`i)

(
λi + µi

f iai
(xi|ai)

f i(xi|ai)

)
+

− δ`i+1

ˆ
ki+1(x0, x1, . . . , xi+1)(λi+1 + µi+1

f i+1
ai+1

(xi+1|ai+1)

f i+1(xi+1|ai+1)
)f i(xi+1|ai+1)dxi+1. (20)

The i− 1 period’s payments fulfills the following equation,

λi(1 + ki−1(x0, x1, . . . , xi−1)`i−1) =
1

U ′(ωi−1(x0, x1, . . . , xi−1))
+

δ`i

ˆ
ki(x0, . . . , xi)

(
λi + µi

f iai
(xi|ai)

f i(xi|ai)

)
f i(xi|ai)dxi.

Suppose ωi(x0, x1, . . . , xi) < ωi−1(x0, x1, . . . , xi−1) ∀xi (except in one point).
Then ki(x0, x1, . . . , xi) = 1 ∀xi and (??) becomes λi = 1

U ′(ωi−1)(1+ki−1`i−1−δ`i) .

Therefore, since δ`i+1

´
ki+1(x0, x1, . . . , xi+1)(λi+1+µi+1

f iai+1
(xi+1|ai+1)

f i(xi+1|ai+1)
)f i(xi+1|ai+1)dxi+1 ≤

δ`i+1λi+1 we obtain

1

U ′(ωi)
≥ (1 + `i − δ`i+1)

(
1

U ′(ωi−1)(1 + ki−1`i−1 − δ`i)
+ µi

f iai
(xi|ai)

f i(xi|ai)

)

Therefore, if (`i − `i+1)δ ≥ ki−1`i−1 − `i and
f iai (xi|ai)
f i(xi|ai) > 0 we conclude

1
U ′(ωi)

≥ 1
U ′(ωi−1) which contradicts ωi < ωi−1. If `i−1 = `i, (`i− `i+1)δ ≥ `i−1− `i

or ki−1 = 0 then (`i − `i+1)δ ≥ ki−1`i−1 − `i will be fulfilled.

Suppose ωi(x0, x1, . . . , xi) > ωi−1(x0, x1, . . . , xi−1) ∀xi (except in one point).
Then ki(x0, x1, . . . , xi) = 0 ∀xi and (??) becomes λi = 1

U ′(ωi−1)(1+ki−1`i−1) .
Therefore, we obtain

1

U ′(ωi)
≤
(

1

U ′(ωi−1)(1 + ki−1`i−1)
+ µi

f iai
(xi|ai)

f i(xi|ai)

)
Therefore, if

f iai (xi|ai)
f i(xi|ai) < 0 we conclude 1

U ′(ωi)
≤ 1

U ′(ωi−1) for which contradicts
ωi > ωi−1. We conclude that the reference must be reached on an interval for all
the cases stated above.
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7.6 Proof of property 7
The marginal utility of saving in period i at rate rl and consuming the savings in
period i+ 1 is given by,

−(1 + 1{ωi≤Ri}`i)U
′(ωi) + δ(1 + rl)

ˆ
(1 + `i+11{ωi+1<ωi})U

′(ωi+1(xi+1))fi+1(xi+1|ai+1)dxi+1(21)

+`i+1δU
′(ωi)

ˆ
ωi+1<ωi

fi+1(xi+1|ai+1)dxi+1

and the marginal utility of borrowing in period i at rate r and paying back in
period i+ 1 is given by,

(1 + 1{ωi<Ri}`i)U
′(ωi) − δ(1 + rb)

ˆ
(1 + `i+11{ωi+1≤ωi})U

′(ωi+1(xi+1))fi+1(xi+1|ai+1)dxi+1(22)

−`i+1δU
′(ωi)

ˆ
ωi+1≤ωi

fi+1(xi+1|ai+1)dxi+1

By (21) the marginal utility of saving at rate 1
δ − 1 is −(1 + `)U ′(y) + U ′(y) < 0.

By (22) the marginal utility of borrowing at rate δ is U ′(y) − (1 + `i+1)U ′(y) −
δ`i+1U

′(y) < 0. Therefore the rate at which the agent would be willing to borrow
is smaller than 1

δ − 1 and the rate at which he would be willing to save must be
greater than 1

δ − 1.

The second point is justified subtracting (21) and (22) with rl = rb = r and
noting that what is obtained is strictly negative.

7.7 Proof of property 8
Suppose that ωi+1(xi+1) ≥ ωi for all xi+1. By (21) the marginal utility of saving
would be

−(1 + 1{ωi≤Ri}`i)U
′(ωi) +

ˆ
U ′(ωi+1(xi+1))fi+1(xi+1|ai+1)dxi+1 (23)

By assumption we will have that
´
U ′(ωi+1(xi+1))fi+1(xi+1|ai+1)dxi+1 < U ′(ωi)

and therefore the agent will not have incentives to save. By 22 the marginal utility
of borrowing is

(1 + 1{ωi<Ri}`i)U
′(ωi)−

ˆ
(1 + `i+11{ωi+1=ωi})U

′(ωi+1(xi+1))fi+1(xi+1|ai+1)dxi+1

−`i+1δU
′(ωi)

ˆ
ωi+1=ωi

fi+1(xi+1|ai+1)dxi+1

it may be positive or negative depending on the parameters of the problem
Now, suppose that ωi+1(xi+1) ≤ ωi for all xi+1. The marginal utility of saving

is be

−(1 + 1{ωi≤Ri}`i)U
′(ωi) +

ˆ
(1 + `i+11{ωi+1<ωi})U

′(ωi+1(xi+1))fi+1(xi+1|ai+1)dxi+1

+`i+1δU
′(ωi)

ˆ
ωi+1<ωi

fi+1(xi+1|ai+1)dxi+1
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We must have
´
U ′(ωi+1(xi+1))fi+1(xi+1|ai+1)dxi+1 > U ′(ωi), therefore, if

ωi > Ri or `i is sufficiently small then the marginal utility would be positive and
therefore the agent will have incentives to save. The marginal utility of borrowing
is,

(1 + 1{ωi<Ri}`i)U
′(ωi)−

ˆ
(1 + `i+11{ωi+1≤ωi})U

′(ωi+1(xi+1))fi+1(xi+1|ai+1)dxi+1

−`i+1δU
′(ωi)

ˆ
ωi+1≤ωi

fi+1(xi+1|ai+1)dxi+1

7.8 Proof of property 11
By backwards induction, the optimal spot contract in period T must give the agent
the reservation utility Ū(ωT−1) and will depend on ωT−1 since it represents the
reference in period T . Thus, the optimal sequence of spot contracts has memory.
The optimal spot contract in period T − 1 solves

max
ωT−1(·)

ˆ (
(xT−1 − ωT−1(xT−1))fT−1(xT−1|aT−1) + δV (ωT−1(xT−1))f(xT |aT )

)
dxT−1

ˆ (
ŨT−1(ωT−1(xT−1)) + δŪ(ωT−1(xT−1))

)
fT−1(xT−1|aT−1) ≥ Ū(cT−2)

aT−1 ∈ argmaxa

ˆ (
ŨT−1(ωT−1(xT−1)) + δŪ(ωT−1(xT−1))

)
fT−1(xT−1|aT−1)

where V (ωT−1(xT−1)) represents the profits of the principal under the opti-
mal spot contract in period T . Therefore, unless Ū(ωT−1(xT−1)) coincides with
the expectation of the last period contract under the full-commitment optimum
the optimal sequence of spot contracts does not implement the full-commitment
optimum.

7.9 Proof of property 9
Using the fact that for any period i at the reference Ri (i.e. when ki ∈ [0, 1]) we
must have

`iki(x0, x1, . . . , xi)

(
λi + µi

f iai
(xi|ai)

f i(xi|ai)

)
=

1

U ′(Ri)
−
(
λi + µi

f iai
(xi|ai)

f i(xi|ai)

)
Noting that the reference in next period’s payment scheme is the current’s

period payment, we have,

δ`2

ˆ
ω2(x2)<ω1

k(x2)

(
λ2 + µ2

f2a2
(x2|a2)

f2(x2|a2)
)f2(x2|a2

)
dx2 = δPx2

(ω2(x2) = ω1|a2)

(
1

U ′(ω1)
− λ2

)
−

ˆ
ω2(x2)=ω1

µ2f
2
a2

(x2|a2)dx2 + δ`2

ˆ
ω2(x2)<ω1

(
λ2 + µ2f

2
a2

(x2|a2)
)
dx2

Replacing the last equation in the optimality condition for period 1 one obtains,
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1

U ′(ω1(x0, x1))
(1 + δP(ω2 = ω1(x0, x1)|a2)) =

(
1+k1(x1)`1+δP(ω1(x0, x1) = ω2|a2)+

− δ`1P(ω1(x0, x1) > ω2)
)
λ2 − δµ2`2

ˆ
ω2<ω1

fa2(x2|a2)dx2 + µ1δ

ˆ
ω2=ω1

fa1(x1|a1)dx1

(24)

By an analogous argument the following expression can be derived,

1

U ′(ω0(x0))

(
1 + δP(ω1 = ω0(x0)|a1) + δ2P(ω2 = ω0(x0)|a2)P(ω1 = ω0(x0)|a1)

)
=

(1 + k0(x0)`0 + δP(ω1 = ω0(x0)|a1) + δ2P(ω2 = ω0(x0)|a2)P(ω1 = ω0(x0)|a1)+

− δ`1P(ω0(x0) > ω1|a1)− δ2`2P(ω0(x0) > ω1|a1)P(ω0(x0) > ω2|a2))

(
λ+ µ0

f0a0
(x0|a0)

f0(x0|a0)

)
+

+−δ2`2
ˆ
ω1=ω0,ω2<ω0

(
µ1
f1a1

(x1|a1)

f1(x1|a1)
+ µ2

f2a2
(x2|a2)

f2(x2|a2)

)
f1a1

(x1|a1)f2a2
(x2|a2)dx1dx2+

+ δ2
ˆ
ω1=ω0,ω2=ω0

(
µ1
f1a1

(x1|a1)

f1(x1|a1)
+ µ2

f2a2
(x2|a2)

f2(x2|a2)

)
f1a1

(x1|a1)f2a2
(x2|a2)dx1dx2

− δµ1`1
ˆ
ω0<ω1

fa1 (x1|a1)dx1 + µ1δ

ˆ
ω0=ω1

fa1 (x1|a1)dx1 (25)

1

U ′(ω2(x0, x1, , x2))
= (1 + k2(x0, x1, x2)`2)

(
λ2 + µ2

f2a2
(x2|a2)

f2(x2|a2)

)
(26)

From (25) it can be seen that for whatever value of the first period’s reference
a λ high enough will insure that right hand side is greater than 1/U ′(R0) for
k0 = 0. Now, replacing in (24) and (26) the following,

(
λ+ µ0

f0
a0

(x0|a0)

f0(x0|a0)

)
=

1

U ′(ω0(x0))
+

−δ2
ˆ
ω1=ω0,ω2=ω0

(
µ1

f1a1
(x1|a1)

f1(x1|a1)
+ µ2

f2a2
(x2|a2)

f2(x2|a2)

)
f1a1

(x1|a1)f2a2
(x2|a2)dx1dx2 +

−µ1δ

ˆ
ω0=ω1

fa1(x1|a1)dx1

we conclude that if 1/U ′(ω0(x0) is big enough the right hand sides of both equa-
tions will be greater than 1/U ′(ω0(x0)) which implies that the payment schemes
will be over the reference in periods 1 and 2.
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